河南卫创轴承精工科技有限公司 2024年产品碳足迹核查报告

委托方:河南卫创轴承精工科技有限公司

编制方:中国电子工程设计院股份有限公司

2025年5月

Carbon CO2

河南卫创轴承精工科技有限公司 1 吨轴承滚子碳足迹 核查报告书

核查机构名称:中国电子工程设计院股份有限公司

核查报告签发日期: 2025年5月

产品碳足迹核查信息表

核查委托方	河南卫创轴承精工 科技有限公司	地址	洛阳市洛龙区李楼乡景 华市场	
联系人	张亚纳	联系方式	18937961996	
产品生产者	河南卫创轴承精工	나 ! 나.	洛阳市洛龙区李楼乡景	
(制造商)	科技有限公司	地址	华市场	
产品名称	1 吨轴承滚子			
产品系列/规格/	轴承滚子/1 吨			
型号				
	ISO14067:2018 《温室气体产品碳足迹量化的要求和指南》			
核算依据	PAS 2050: 2011 《商品和服务在生命周期内的温室气体排放			
		评价规范》		
生命周期阶段	从摇篮到大门			
产品碳足迹功	1 时 村 不			
能单位				
碳足迹(CO ₂ -eq)	6512.28kgCO ₂			
1				

核查结论:

经核查,河南卫创轴承精工科技有限公司生产的 1 吨轴承滚子,依据 ISO 14067:2018、PAS 2050: 2011 要求执行产品生命周期温室气体排放量的核查,核查结果确认符合 ISO 14067:2018、PAS 2050: 2011 标准要求。

1 吨轴承滚子,"从摇篮到大门"的生命周期阶段碳足迹排放为: 6512.28 kgCO₂-eq。

核查组长	田璐璐	日期	2024年2月26日
技术复核人	李靖	日期	2024年2月27日
批准人	郑超超	日期	2024年2月28日

录

1.4	生命人	周期评价与产品碳足迹	1
2.	目标	与范围定义	1
	2.1	核查目的	1
	2.2	核查范围	2
		2.2.1 功能单位	2
		2.2.2 核查指标	2
		2.2.3 系统边界	2
	2.3	数据取舍规则	2
	2.4	数据质量要求	3
	2.5	软件和数据库	4
3.	数捷	· 收集	4
	3.1	原辅材料成分及运输	4
	3.2	生产过程所需消单	5
4.	产品	□碳足迹结果与分析	6
5.	生命	7周期解释	7
	5.1	假设和局限性	7
	5.2	数据质量评估	7
		5.2.1 代表性	7
		5.2.2 完整性	7
		5.2.3 可靠性	8
		5.2.4 一致性	8
6.	结论	>	9

1.生命周期评价与产品碳足迹

生命周期评价方法(Life Cycle Assessment,LCA)是系统化、定量化评价产品生命周期过程中资源环境效率的标准方法,它通过对产品上下游生产与消费过程的追溯,帮助生产者识别环境问题所产生的阶段,并进一步规避其在产品不同生命周期阶段和不同环境影响类型之间进行转移。国内外很多行业都开展了产品 LCA 评价,用于行业内企业的对标和改进、行业外部的交流,并为行业政策制定提供参考依据。

产品碳足迹(Product Carbon Footprint, PCF)是指某个产品在其生命周期过程中所释放的直接和间接的温室气体总量,即从原材料开采、产品生产(或服务提供)、分销、使用到最终再生利用/处置等多个阶段的各种温室气体排放的累加。产品碳足迹已经成为一个行之有效的定量指标,用于衡量企业的绩效,管理水平和产品对气候变化的影响大小。

2.目标与范围定义

2.1 核查目的

产品生命周期评价和碳足迹核查作为生态设计和绿色制造实施的基础,近年来已经成为人们研究和关注的热点。开展生命周期评价和碳足迹核查能够最大限度实现资源节约和温室气体减排,对于行业绿色发展和产业升级转型、应对出口潜在的贸易壁垒而言,都是很有价值和意义的。

本项目按照 ISO 14040:2006《环境管理 生命周期评价原则与框架》、ISO 14044:2006《环境管理 生命周期评价要求与指南》、ISO 14067:2018 《温室气体产品碳足迹量化的要求和指南》、PAS 2050: 2011《商品和服务在生命周期内的温室气体排放评价规范》的要求,建立轴承滚子生命周期模型,编写碳足迹核查报告,结果和相关分析可用于以下目的:

● 得到产品的生命周期碳足迹指标结果,用于轴承滚子生产企业比较不同工艺下产品的碳排放情况,选择更为环境友好的工艺技术。

碳足迹核查核证报告:河南卫创轴承精工科技有限公司

- 报告可用于下游客户,客户可根据产品的生命周期碳足迹指标选择更为低碳的产品。
- 报告可用于市场宣传,展示企业产品在碳排放方面的优势,为行业企业绿色 采购提供材料支持。

2.2 核查范围

2.2.1 功能单位

本次研究的功能单位定义为: 1吨轴承滚子, 规格为1吨。

2.2.2 核查指标

本项目通过对碳足迹指标的核查,帮助企业发现减少产品温室气体排放、实现节能减排的途径,同时也是一种促进绿色消费的重要手段,从而支持可持续的生产与消费。通过对产品碳足迹的核查,为企业评估和实施有针对性的改进提供基础数据。

碳足迹的计算结果为产品生命周期各种温室气体总量排放,用二氧化碳当量(CO_2 -eq)表示, 单位为 kg CO_2 -eq 或者 g CO_2 -eq。常见的温室气体包括二氧化碳(CO_2)、甲烷(CH_4)、氧化亚氮(N_2O)、氢氟碳化物(HFC)和全氟化碳(PFC)等。

2.2.3 系统边界

本项目核查的系统边界包括上游原辅料生产阶段和运输阶段、1 吨轴承滚子 生产阶段。

2.3 数据取舍规则

在选定系统边界和指标的基础上,应规定一套数据取舍准则,忽略对评价结果影响不大的因素,从而简化数据收集和评价过程。本研究取舍准则如下:

- a) 原则上可忽略对碳足迹结果影响不大的能耗、原辅料、使用阶段耗材等消耗。例如,小于产品重量 1%的普通消耗可忽略, 而含有稀贵金属(如金银铂钯等)或高纯物质(如纯度高于 99.99%) 的物耗小于产品重量 0.1%时可忽略,但总共忽略的物耗推荐不超过产品重量的 5%;
 - b) 道路与厂房等基础设施、生产设备、厂区内人员及生活设施的消耗和排

碳足迹核查核证报告:河南卫创轴承精工科技有限公司

放,可忽略。

c) 低价值废物作为原料,如生活垃圾等,忽略其上游生产数据:

2.4 数据质量要求

数据质量评估的目的是判断碳足迹核查结果和结论的可信度,并指出提高数据质量的关键因素。本研究数据质量可从四个方面进行管控和评估,即代表性、完整性、可靠性、一致性。

- 1)数据代表性:包括地理代表性、时间代表性、技术代表性三个方面。
- 地理代表性: 说明数据代表的国家或特定区域, 这与研究结论的适用性密切相关。
- 时间代表性: 应优先选取与研究基准年接近的企业、文献和背景数据库数据。
 - 技术代表性:应描述生产技术的实际代表性。
 - 2)数据完整性:包括产品模型完整性和数据库完整性两个方面。
- 模型完整性:依据系统边界的定义和数据取舍准则,产品生命周期模型需包含所有主要过程。产品生命周期模型尽量反映产品生产的实际情况,对于重要的原辅料(对碳足迹指标影响超过 5%的物料)应尽量调查其生产过程;在无法获得实际生产过程数据的情况下,可采用背景数据,但需对背景数据来源及采用依据进行详细说明。未能调查的重要原辅料需在报告中解释和说明。
- 背景数据库完整性: 背景数据库一般至少包含 一个国家或地区的数百种主要能源、基础原材料、化学品的开采、制造和运输过程,以保证背景数据库自身的完整性。
 - 3) 可靠性:包括实景数据可靠性、背景数据可靠性、数据库可靠性。
- 实景数据可靠性:对于主要的原辅料消耗、能源消耗和运输数据应尽量采用企业实际生产记录数据。所有数据将被详细记录从相关的数据源和数据处理算法。采用经验估算或文献调研所获取的数据应在报告中解释和说明。
- 背景数据可靠性: 重要物料和能耗的上游生产过程数据优先选择代表原产地国家、 相同生产技术的公开基础数据库, 数据的年限优先选择近年数据。 在没有符合要求的背景数据的情况下, 可以选择代表其他国家、代表其他技术的

碳足迹核查核证报告:河南卫创轴承精工科技有限公司

数据作为替代,并应在报告中解释和说明。

• 数据库可靠性:背景数据库需采用来自本国或本地区的统计数据、调查数据和文献资料,以反映该国家或地区的能源结构、生产系统特点和平均的生产技术水平。

4) 一致性

所有实景数据(包括每个过程消耗与排放数据)应采用一致的统计标准,即基于相同产品产出、相同过程边界、相同数据统计期。若存在不一致的情况,应在报告中解释和说明。

2.5 软件和数据库

本项目采用亿科开发的 eBalance 软件和中国生命周期基础数据库 CLCD,建立产品生命周期模型并计算分析。部分原辅料数据采用了瑞士 Ecoinvent 数据库的数据。

CLCD 是代表中国基础工业系统的 LCA 基础数据库, 反映中国生产技术及市场平均水平。CLCD 数据库包括国内 600 多个大宗的能源、原材料、运输的清单数据集,是国内目前唯一可公开获得的中国本地生命周期基础数据库。

Ecoinvent 数据库是国际上用户最多的 LCA 数据库之一,包含欧洲及世界多国的 7000 多个单元过程数据集以及相应产品的汇总过程数据集。Ecoinvent 数据库适用于含进口原材料的产品或出口产品的 LCA 研究,在本项目中也用于代替中国本地缺失的数据。

3. 数据收集

3.1 原辅材料成分及运输

表 3-1 原辅材料成分、用量及运输清单

材料名称	耗量	单位	运输方式	运输距离/km
钢材	1200	kg/吨	货车	920
砂轮	50	kg/吨	货车	50

碳足迹核查核证报告:河南卫创轴承精工科技有限公司

磨削液	10	kg/吨	货车	30
防锈油	20	kg/吨	货车	25

3.2 生产过程所需消单

生产过程能源消耗涉及电力和水,根据统计台账,各过程及单位产品消耗量 如下。

表 3-2 生产过程能源消耗清单

能耗种类	单位	用量
电力	kWh/吨	2129
水	m³ /吨	1.3

4. 产品碳足迹结果与分析

根据企业提供的产品原辅材料清单、收集的生产过程的能源消耗数据和部分原料的文献调研数据,在 eBalance 中建立了 1 吨轴承滚子的生命周期模型。

1 吨轴承滚子的碳足迹结果为 6512.28kg CO₂-eq, 即产生 6512.28 kg CO₂-eq 的排放。表 4-1 中列出了各个部分对产品碳足迹贡献结果。

表 4-11 吨浇注料的生命周期碳足迹贡献结果

过程名称	GWP (kgCO ₂ -eq)	占比
1吨轴承滚子生产	6512.28	/
原辅材料	5279.10	81.06%
能源消耗-电力、水	1148.87	17.64%
原辅材料- 货车运输	84.31	1.30%

由以上结果可知,对于产品碳足迹结果贡献最大的是原辅材料生产过程中产生的二氧化碳,占总排放量的81.06%;其次为产品生产过程中消耗能源排放的二氧化碳占排放总量的17.64%,原辅材料运输过程中排放二氧化碳的量,占总排放量的1.30%,排放量相对较小。

5. 生命周期解释

5.1 假设和局限性

本次产品 LCA 报告的实景数据中轴承滚子的生产过程数据来源于企业调研数据, 背景数据来自中国生命周期数据库 CLCD 和瑞士的 Ecoinvent 数据库,部分原料生产过程的数据采用文献数据。受项目调研时间及供应链管控力度限制,未调查重要原料的实际生产过程,计算结果与实际供应链的环境表现有一定偏差。建议在调研时间和数据可得的情况下,进一步调研主要外购原材料的生产过程数据,有助于提高数据质量,为企业在供应链上推动协同改进提供数据支待。

5.2 数据质量评估

5.2.1 代表性

本次报告中各单元过程实景数据代表特定生产企业的一般水平。实景数据采用 2024 年的企业生产统计数据,背景数据库数据采用近 6 年的数据,文献调查数据采用近 6 年的数据。

5.2.2 完整性

(1) 模型完整性

本次报告中产品生命周期模型均包含上游原辅料生产和运输阶段、产品生产 阶段,满足本研究对系统边界的定义。产品生产过程中所有原料消耗均被考虑在 内。

(2) 背景数据库完整性

本研究所使用的背景数据库包括 CLCD-China 数据库和瑞士的 Ecoinvent 数据库。CLCD-China 数据库包括中国国内 600 多个大宗的能源、原材料运输的清单数据集,并仍在不断扩展。Ecoinvent 数据库包含欧洲及世界多个国家的 7000 多个单元过程数据集以及相应的产品的汇总过程数据集。

以上两个背景数据库均包含了主要能源、基础原材料、制造运输过程,满足背景数据库完整性的要求。

碳足迹核查核证报告:河南卫创轴承精工科技有限公司

5.2.3 可靠性

(1) 实景数据可靠性

本次报告中,各实景过程原料和能源消耗数据均来自企业统计台账表或实测数据,数据可靠性高。

(2) 背景数据可靠性

本研究中 CLCD 数据库数据采用中国或中国特定地区的统计数据、调查数据和文献资料,数据代表了中国生产技术及市场乎均水平,数据收集过程的原始数据和算法均被完整记录,使得数据收集过程随时可重复、可追溯。

5.2.4 一致性

本研究所有实景数据均采用一致的统计标准,即按照单元过程单位产出进行统计。所有背景数据采用一致的统计标准,其中 CLCD 数据库在开发过程中建立了统一的核心模型,并进行详细文档记录,确保了数据收集过程的流程化和一致性。

6. 结论

本次报告主要得出以下结论:

- 1 吨轴承滚子的碳足迹结果为 6512.28 kgCO₂-eq。
- 分析 1 吨轴承滚子的碳足迹指标,由以上结果可知,对于产品碳足迹结果贡献最大的是原辅材料生产过程中产生的二氧化碳,占总排放量的 81.06%; 其次为产品生产过程中消耗能源排放的二氧化碳占排放总量的 17.64%,原辅材料运输过程中排放二氧化碳的量,占总排放量的 1.30%,排放量相对较小。

为减小产品碳足迹,建议如下:

- (1) 在分析指标的符合性评价结果以及碳足迹分析、计算结果的基础上, 结合环境友好的设计方案采用、落实生产者责任延伸制度、绿色供应链管理等工 作,提出产品生态设计改进的具体方案。
 - (2)继续推进绿色低碳发展意识

坚定树立企业可持续发展原则,加强生命周期理念的宣传和实践。运用科学方法,加强产品碳足迹全过程中数据的积累和记录,定期对产品全生命周期的环境影响进行自查,以便企业内部开展相关对比分析,发现问题。在生态设计管理、组织、人员等方面进一步完善。

(3) 推进产业链的绿色设计发展

制定生态设计管理体制和生态设计管理制度,明确任务分工;构建支撑企业生态设计的评价体系;建立打造绿色供应链的相关制度,推动供应链协同改进。